Fathoms
Statistics Demonstrations for Deeper Understanding

Tim Erickson
Contents

What Are These Demos About? xi

How to Use These Demos xii

If This Is Your First Time Using Fathom xv

Tutorial: An Extended Example xv

A Few Good Skills xix

Fathom Overview xxi

Measures of Center and Spread

Demo 1: The Meaning of Mean 2

The mean • How individual values affect the mean

Demo 2: Mean and Median 4

Measures of center: mean, median, and midrange • Resistance: what happens to the measures when you move one point

Demo 3: What Do Normal Data Look Like? 6

Normally distributed data • The effect of changing the mean and standard deviation

Demo 4: Transforming the Mean and Standard Deviation 8

What happens to the mean and standard deviation when you add a constant to every value or multiply every value by a constant

Demo 5: The Mean Is Least Squares, Too 10

Defining the mean as the place where the sum of squares of deviations is a minimum (just like the least-squares line) • The median, and what it minimizes

Regression and Correlation

Demo 6: Least-Squares Linear Regression 14

Exploring the squares in least squares • Minimizing the areas of the squares built on residuals

Demo 7: Standard Scores 16

Using standard scores to compare unlike scales • Making a scale in terms of standard deviations

Demo 8: Devising the Correlation Coefficient 18

How the correlation coefficient measures what it does

© 2014 William Finzer
Demo 9: Correlation Coefficients of Samples
How samples from a correlated population yield different values for the correlation • How sample size affects that sampling distribution

Demo 10: Regression Toward the Mean
Regression toward the mean • The meaning—and asymmetry—of the least-squares line

Random Walks and the Binomial Distribution

Demo 11: Flipping Coins—the Law of Large Numbers
How the proportion of heads approaches 0.5 as sample size increases • How the number of heads does not approach half the sample size

Demo 12: How Random Walks Go as Root N
How the distance from the origin increases with the number of steps

Demo 13: Building the Binomial Distribution
Constructing the binomial distribution by resampling • How the distribution depends on the population proportion

Demo 14: More Binomial
How the binomial distribution depends on sample size for small N • The relationship between the distribution of sample proportions and the distribution of sample counts

Demo 15: Two-Dimensional Random Walks
Unexpected behavior in 2D random walks • How the 2D walk eventually looks like a 2D normal distribution

Standard Deviation, Standard Error, and Student’s t

Demo 16: Standard Error and Standard Deviation
Getting a feel for the difference between standard deviation and standard error

Demo 17: What Is Standard Error, Really?
The connection between standard error and the sampling distribution of the mean • How the sample size connects standard deviation and standard error

Demo 18: The Road to Student’s t
Using standard error as the scale for measuring how far a sample mean is from the true mean • How these quantities are not normally distributed; in fact they follow a t-distribution

Demo 19: A Close Look at the t-Statistic
How sample mean, standard deviation, t, and P interrelate • How they depend on the values of individual points in a sample

Sampling Distributions

Demo 20: The Distribution of Sample Proportions
How sample size and population proportion affect the distribution
Contents

Demo 21: Adding Uniform Random Variables 61
What happens when you add two uniform random variables • How that corresponds to adding two dice

Demo 22: How Errors Add 63
Basic error analysis • How to find the error in the sum of two quantities that each have some measurement error

Demo 23: Sampling Distributions and Sample Size 65
How sampling distributions (of the mean) get narrower as you increase sample size

Demo 24: How the Width of the Sampling Distribution Depends on \(N \) 68
How the width (as measured by IQR) of a sampling distribution of the mean is inversely proportional to the square root of the sample size

Demo 25: Does \(n – 1 \) Really Work in the SD? 71
Unbiased estimators • How the familiar formula for sample standard deviation is not unbiased • Why we should care about variance

Demo 26: German Tanks 73
Unbiased estimators • Evaluating estimators from their sampling distributions • Even among unbiased estimators, some are better than others

Demo 27: The Central Limit Theorem 76
A demo of the CLT • How sampling distributions usually look normal • Cases where they do not look normal

Confidence Intervals 79

Demo 28: The Confidence Interval of a Proportion 80
Defining the confidence interval • Looking at sample results in terms of plausibility

Demo 29: Capturing with Confidence Intervals 83
How confidence intervals of a proportion do not always capture the population value

Demo 30: Where Does That Root (\(p(1 – p) \)) Come From? 85
The standard deviation of a variable that’s only 0 or 1 • Connecting the “proportion” situation to the “mean” situation

Demo 31: Why np > 10 Is a Good Rule of Thumb 87
Explaining the np > 10 rule for using the normal approximation in the CI of a proportion

Demo 32: How the Width of the CI Depends on \(N \) 90
How the width of a confidence interval is inversely proportional to the square root of the sample size

Demo 33: Using the Bootstrap to Estimate a Parameter 93
The bootstrap • Using resampling (with replacement) to create an interval for a parameter
Demo 34: Exploring the Confidence Interval of the Mean
How the CI depends on individual values

Demo 35: Capturing the Mean with Confidence Intervals
How confidence intervals of a mean do not always capture the population value
What repeated CIs look like

Hypothesis Tests

Demo 36: Fair and Unfair Dice
Creating a measure of “fairness” • Sampling distributions • Testing hypotheses empirically • The chi-square statistic

Demo 37: Scrambling to Compare Means
Randomization test • Using scrambling to simulate the null hypothesis • Generating a sampling distribution

Demo 38: Using a t-Test to Compare Means
Comparing means with Student’s t

Demo 39: Another Look at a t-Test
Repeated t-tests on samples from the same distribution • How t, P, mean, and standard deviation interrelate

Demo 40: On the Equivalence of Tests and Estimates
How a hypothesis test and a confidence interval are really the same

Demo 41: Paired Versus Unpaired
How a paired test gives a significant result more easily than its unpaired counterpart

Demo 42: Analysis of Variance
Assessing whether means are different in different groups • Introduction to ANOVA

Power in Tests

Demo 43: The Distribution of P-Values
How the distribution of P is flat if the null hypothesis is true • How it changes if the null hypothesis is false

Demo 44: Power
How power—the chance that you reject the null hypothesis—changes with the population parameters

Demo 45: Power and Sample Size
How power—the chance that you reject the null hypothesis—changes with sample size